
JAMToolsDocumentation

JAudio

Modding

TOOLkit

JAMToolsDocumentation

Contents

Contents 2

About JAMTools (JAudioModdingToolkit) ... 4

Terminology.. 4

IBNK ... 4

WSYS .. 4

BMS ... 4

AAF .. 4

BAA .. 4

SFT / BSFT .. 5

Sound Table / ST / BST ... 5

SC/BSC ... 5

JAudio version table ... 6

Installing JAMTools into your game .. 7

About the Audio_Modding folder .. 13

Jampacked 14

Command Line ... 14

unpacking ... 14

Packing ... 14

The PROJECT.JSON file ... 15

originalFile ... 15

projectName .. 15

format .. 15

JAMToolsDocumentation

Includes .. 16

Formats .. 18

AAF .. 18

BAA .. 19

Notes ... 20

Hashes ... 20

WSYSBUILDER ... 22

About ... 23

Command Line ... 23

Project Output ... 24

manifest.json ... 24

wavetable.json ... 25

Scenes .. 28

The folders and their function .. 29

WAV ... 29

REF ... 29

Custom ... 29

Where do I find .ws / .wsys files? ... 29

BAST 30

About ... 31

Command Line ... 31

Sound ID’s .. 31

JASE ... 32

REBUILDING JASE ... 34

JAMToolsDocumentation

About JAMTools (JAudioModdingToolkit)

JAMTools is a multi-game toolset for modifying the audio systems in various

Nintendo Gamecube titles. It is designed for ease of use, and conversion of the

binary data into a human readable and human editable format.

Terminology

IBNK

IBNK is the “Instrument Bank” format. This contains information such as the

pitching + grouping of sounds, the fadein and fadeout (attack / release) , and

oscillation.

WSYS

The WSYS is the “WaveSystem”. The wavesystem controls when and how sounds

are loaded, where they are loaded from, and their allocation in memory.

BMS

BMS is a “Binary Musical Sequence”. It contains music bytecode that tells the

sequence engine how to play notes.

AAF

AAF is the Audio Archive File. It contains various sections, like the IBNK / WSYS /

sometimes BMS / Sequence Table / BARC header. It is the file that points to all of

the initialization data for the audio system.

BAA

BAA is the Binary Audio Archive. It is an updated version of the Audio Archive File,

with a unique quirk of being able to contain more of itself. (Though that

functionality is only ever seen in one game)

JAMToolsDocumentation

SFT / BSFT

The SFT is the “Stream File Table” or the “Binary Stream File Table”. It contains file

paths to match up the files on the disk to entries in the sound table

Sound Table / ST / BST

The “Sound Table” or in newer games “Binary Sound Table” is the container that

contains all parameters for the sound playback. The sound table is split up into

categories that determine where the sounds are played from, and what volume /

source they use (as some entire categories can have their effects and playback

adjusted via code at any time in the game, for example, when you pause in

windwaker)

SC/BSC

Sequence Collection or Binary Sequence Collection. Contains the information to

find the BMS files usually, or sometimes substitutes for the “SE.BMS” on newer

games.

JAMToolsDocumentation

JAudio version table

Pikmin 1 Hybrid V1 banks, v1 sequences, custom Audio Archive format.

Luigi’s Mansion v1 Fully V1 system

Super Mario Sunshine v1 Fully V1 system

Pikmin 2 v1* Fully V1 system with custom streamtable format.

Windwaker v1 Fully V1 system

Mario Kart Double Dash Hybrid v1 Banks, v2 Archive (BAA) , v2 Sequence

format, v2 soundtable with v1 entries,

nested BAA’s (BAAC)

Four Swords Adventure Hybrid V1 and V2 banks + v2 system (weird BST)

Donkey Kong Jungle Beat v2 Fully V2 system.

Twilight Princess V2 Fully V2 system.

Super Mario Galaxy 1 V2 Fully V2 system + special subsystem

Super Mario Galaxy 2 V2 Fully V2 system + special subsystem

Links Crossbow Training V2 Fully v2 system

Pacman VS V2 Fully v2 system.

Zelda Collectors Edition V2 Fully V2 system.

JAMToolsDocumentation

Installing JAMTools into your game

1. Visit https://www.xayr.ga/tools/SoundModdingToolkit/ and select the most

recent version of the tool.

2. Select the specific tooling for the game you are modifying.

https://www.xayr.ga/tools/SoundModdingToolkit/

JAMToolsDocumentation

3. You now have to extract your ROM. Open Dolphin and select “Properties”

on your game.

4. On the properties of this game, select “Filesystem”. Right click on disk then

select “Extract Entire Disc”

JAMToolsDocumentation

5. Create a new folder, and extract the contents into it by pressing “Select

Folder”

 Inside of that folder should look something like this.

JAMToolsDocumentation

6. Open the “Files” folder. And locate the AudioRes folder

JAMToolsDocumentation

7. Open the ZIP file you downloaded for your game, then copy all of the

contents into your AudioRes folder.

8. Your folder should now look like this. When it does, run the “Initialize.bat”

JAMToolsDocumentation

9. Wait for extraction to complete. Then the toolkit is successfully installed.

You should see an “Audio_Modding” folder.

JAMToolsDocumentation

About the Audio_Modding folder

The Audio_Modding folder is generated by the tool called “jampacked”. The

various other folders within it are created by various different tools (ibnktool,

wsysbuilder, barctool, etc….) . The “project.json” within it contains the

information required to rebuild the AAF / BAA.

The “include” folder will contain the various binary forms of the AAF / BAA sections. The project.json will have
references to each of these sections when it is generated. If you would like information on editing the AAF or BAA,
look for the tool “jampacked” in the documentation.

WS*** folders usually contain folders generated b y wsysbuilder. (Wave system data)

IBNK*** folders usually contain contents generated by ibnktool (Instrument Bank Data)

Sequences usually contains the output of barctool.

SoundTable is the work of bast.

While in some games (such as pikmin 1) these folders may be named differently, it will be easy to understand the
function of a particular section.

JAMToolsDocumentation

Jampacked

JAMPACKED

Jampacked is a tool used for packing / unpacking the Audio Archive File or the

Binary Audio Archive.

Command Line

unpacking

Jampacked.exe <unpack> <aaf/baa/bx file> <output_folder>

Unpacks the AAF / BAA or BX file to a project.json + includes.

Packing

Jampacked.exe <pack> <project_folder> <output_file>

Packs the project folder back into its source format, or the format specified by the

project.json

JAMToolsDocumentation

The PROJECT.JSON file

The project.json file contains the information needed to rebuild your audio

archive. It is designed to be edited, but for jampacked it comes in two variations.

The base header will always contain “originalFile” “projectName” and “format”

originalFile

the name of the original audio archive, used if a project output file is not

specified.

projectName

this is the name of the project folder, it is not needed either.

format

Format is the important field that specifies what information it should be looking

for during the rebuild. It will also determine the output format of the project

when it is rebuilt.

JAMToolsDocumentation

Includes

Includes dictate the sections that are loaded into the audio archive.

When extracted, the includes folder includes any sub-files that were contained

inside of the AAF or BAA, such as any WSYS, IBNK, the Stream Table, any other

BAA’s or AAF’s (yes, they can be nested, have fun.)

Inside of the includes folder are the various components of the BAA or AAF.

JAMToolsDocumentation

.BNK Instrument Bank

.WSY WSYS

.STM Stream Table

.BDI Build Date Info

.DAT Unknown data

.ARC Sound or Sequence Archive

.BSTN Binary Sound Table Namearchive

.BST Binary Sound Table

.BMS Binary Musical Sequence

JAMToolsDocumentation

Formats

AAF

The AAF format has two unique sections and a bit of a “cheat” to get it to

function. The AAF format has a continuous table of sections, but has special

markers to determine where to put the clusters for the wavesystems and

instrument banks, as they are stored in a special way.

DO NOT PUT A WSYS OR IBNK DIRECTLY IN THE TABLE. It will butcher your AAF.

(This only applies for the AAF format. The BAA format doesn’t care.)

Here is what the “Cheat” looks like.

You can shift it wherever you like in the includes, so long as it appears. These will

both put the contents of the “banks” includes list and the “waves” includes list in

a special table format required by the game (respectively).

JAMToolsDocumentation

BAA

Different from the AAF type, BAA will not include a “waves” and “banks” cluster.

Everything is listed as a raw include entry. The large difference is that the hashes

are different.

JAMToolsDocumentation

Notes

Hashes

Hashes are raw data that get put into the AAF or BAA.

This is a hash. You’ll need to know the hash for each type that you want to add.

Usually you can just copy them from other hashes in the project. For example, if

you wanted to add a new IBNK in your AAF, its hash would have to be 2.

FOR AAF

IBNK 2

WSYS 3

SOUND_TABLE 1

SEQUENCE_COLLECTION 4

STREAM_MAP 5

JAMToolsDocumentation

FOR BAA

SOUND_TABLE 1651733536

SOUND_TABLE_STRINGS 1651733614

WSYS 2004033568

IBNK 1651403552

MUSIC_SEQUENCE 1651340064

JAMToolsDocumentation

WSYSBUILDER

WSYSBUILDER

JAMToolsDocumentation

About

WSYSBuilder, as it’s name implies is used to pack and unpack WSYS’s.

You can extract the .ws or .wsy files from your Audio Archive with JAMPACKED, or

if you’re using the complete toolset, you can find them in the “include” folder in

the “Audio_Modding” folder.

WSYSBuilder was the first tool developed for JAMTools, so it’s a bit different.

WSYSBuilder, unlike most of the tools here, supports the WSYS format for all

games.

Command Line

This tool has built in help for it’s commandline.

Please execute “wsysbuilder help”

JAMToolsDocumentation

Project Output

The output of a wsysbuilder project looks like this.

manifest.json

This is the “root” file for the project. It contains several fields to specify rebuilding

parameters.

JAMToolsDocumentation

id

This will be the global ID of the WSYS when it is loaded ingame. Each WSYS that is

loaded must have a unique ID.

wavetable

This is the file that will be used to load all of the waveid’s for the entire WSYS. You

cannot rebuild without this.

sceneOrder

This is an ordered list of references to “scene” files. The “scenes” generate the

.AW files.

wavetable.json

The wavetable contains a list of waveid’s and the associated information to load

with the WSYS .

JAMToolsDocumentation

The key of the dictionary is in fact the waveid it is associating that configuration

information with.

The ID lines up with the wav files in the “wav” folder.

MAKE SURE YOU READ THE NOTES.

format

This is the format that the sound is repacked in

0 ADPCM4

1 ADPCM2

2 PCM8

3 PCM16

JAMToolsDocumentation

key

This is the base midi note for the sound when it is played back. Raising it will

lower the pitch, and lowering it will raise the pitch. It is 0-128. The note that plays

gets subtracted by this value.

sampleRate

the samplerate of this sound. The rate at which it plays back. Technically this can

also modify pitch, but it is not recommended.

sampleCount

The count of each individual sample for this sound until the end, regardless of

loop point.

loop

Does the sound loop?

loopStart

What sample the sound starts to loop at.

loopEnd

What sample the looping jumps back to the loopStart at if loop is enabled.

last / penult

Part of the ADPCM4 rebuild system. It requires these two values to transition the

ADPCM4 stream back into the loopStart.

A final note about all of these values.

If you are adding a custom sound from a .wav file, all values

except “key” will be ignored and replaced with the information

derived from the .WAV file at runtime, including loops. WAV

files can be looped in most any DAW with a “SMPL” header.

Your JSON file will not be modified or saved over.

JAMToolsDocumentation

Scenes

Scenes are effectively the .AW files. The game will load a different .aw / scene

depending on what level or scenario you’re in currently. Each .aw file is custom

built to contain the sound data that a level or scene will need, and only that data.

The basics of a scene are the “awfile” which controls the output name of the .aw,

and of course the “waves”. The waves are numbers, basically an array of

“waveid”’s. Meaning any number in this list must have appeared inside of the

“wavetable.json” first.

JAMToolsDocumentation

The folders and their function

WAV

The WAV folder contains the decoded version of all of the sound files, named by

their ID. You can use this to listen to sounds and find the ID that you’re looking

for. This will not affect rebuilding if it is modified.

REF

The REF folder is used to fulfil a sound data request in the event that the file is not

available in the “custom” folder. So if you don’t replace a sound it will return to its

normal self by using the information in this folder.

Custom

The custom .WAV files for sound replacement go in here. This is the first folder

searched for a soundID during rebuilding. The .WAV files must share the same

name as the soundID. If you put a file in here with the same name as an existing

soundID, it will replace the audio contents of that ingame.

All WAV files must be 16 bit mono PCM when importing,

32khz or less. Importing will fail and stop if this is not the

case.

Where do I find .ws / .wsys files?

You can look in the include folder of any extracted JAMPACKED project. The

actual WSYS body is contained within the Audio Archive (BAA/AAF). So you’ll have

to extract it out with jampacked first, and then repack it after you’ve changed it

with wsysbuilder.

JAMToolsDocumentation

BAST

BAST

JAMToolsDocumentation

About

BAST is used to pack and unpack the sound table and sound table name files.

It is compatible with both JAudioV1 and JAudioV2.

Sound Table

The sound table is used to supply parameters and allocate slots for sounds either

in the SE.BMS, Streamed files, or otherwise. This is where a sound is assigned its

“ID”. In order to ADD a sound you have to ADD a sound slot in the sound table.

Command Line

This tool has built in help for it’s commandline.

Please execute “bast help”

Please take notice of the second format. BAST supports both JAudiov1 JASE

format and JAudiov2 BST format. You need to use the appropriate format for the

game you are modifying.

Sound ID’s

Sound ID’s are assigned to a category and sequentially. Each sound a has a

“Global” id, but the times that is actually used is nil.

JAMToolsDocumentation

Categories are loaded in a particular order with a particular set of sound ID’s that

it loads.

The structure of a sound ID is a u16 (c= category, f = flag, n = id)

c(f+n)nn

So sound 61 in category 11 would look like B83D (flag for not empty is 800, if the

sound is empty it would be B03D, but we add 800 because it is an allocated

sound. Any DUMMY sounds will have 0 instead of 8)

When repacking, BAST will automatically calculate sound ID’s.

Format here https://xayr.ga/wiki/BST

JASE AND THE CATEGORY INCLUDES

The JASE or V1 format is composed of just categories and sounds.

BAST will generate .json files with the category ID on each one. Inside of the JSON

files will be sound configuration.

https://xayr.ga/wiki/BST

JAMToolsDocumentation

Sound ID’s and Category Data

Each of the entries consumes a sound ID. You can have a maximum of 2047

sounds per category.

You can copy and paste this to make new sound slots, the parameters when

adjusted will affect that particular sound ingame.

ID is the global ID for that sound (remember that it will usually be in hexadecimal)

Index is the ID inside of that category, remember ((categoryID) << 12) + 800 +

soundID will be the ID of that sound. “ID” and “index” are just helper values.

Sflags, and uflags are unknown, only there for rebuilding

Type indicates the type of sound, different values here indicate how the sound is

played back

JAMToolsDocumentation

Loadmode indicates the source for the sound

Is_not_empty indicates whether or not the sound should be treated as an empty

or not,

Pitch and volume are pretty self-explanatory.

REBUILDING JASE

When rebuilding a JASE-format archive, you’ll need the rebuild hash or rebuild

instructions. This is a giant hexadecimal number that indicates the order of

categories..

bast.exe pack my_bst_project out.bst "FFFFFFFFFFFFFF1011000102030405060708"

This will pack category 10, then 11, then 0, 1,2,3,4,5,6,7,8. Every game requires that its category

order is intact. If you can’t create this, you can always pass the parameter as “guess” or it will

default to it.

BST format

BST format is usually seen in “v2” jaudio implementations.

Contrary to JASE, the BST has “libraries” and “Categories”.

In this sense, “Categories” refer to a type of sound. Libraries refer to a list of

sounds with a common function.

JAMToolsDocumentation

Project.json

The project.json will list a list of folders that contains the BST data, this is a list of

“categories”

Inside each of the listed folders will be a “category.json” that will list the libraries

that were included in this category.

Library JSON files & Sounds

The library JSON files will contain the parameters for sound playback.

The BST format was updated to have unions for sound parameters, so you’ll see

some common parameters through sound objects, but you’ll also find that the

various types have different parameters. Note the differences between a

streamed and sequenced sound entry.

JAMToolsDocumentation

Not all values have been figured out for these parameters yet, so they will change

as the tool evolves. Usually, you can get the desired results just by editing one of

the named variables.

Sound ID’s

Sound ID’s in V2 (BST) are calculated a bit differently)

Again, as the last engine has, sound ID’s are in fact sequential in the category.

Meaning the next sound will consume the next ID.

However, in this version of the engine, you can have 65534 sounds per category.

Sounds have both a global ID and a local ID, but only the local ID is used (based on

category).

The local ID of a sound can be calculated with the following code

SoundIndex | (LibraryIndex << 0x10)

When repacking, BAST will automatically calculate sound ID’s.

