JAMToolsDocumentation

JAudio
Modding

TOOLKkit

ﬂ xayrga

JAMToolsDocumentation

Contents

Contents 2

About JAMTools (JAudioModdingToolKit).....ccccceeeeerirmmniciiriennnceinneennceeenennncennnes 4

LT 11T Lo o ¥ =42 4
12 TP 4
1T 4
BIMIS e aaaaaaaaaaaaaaaaaaans 4
L Y 4
B A A e a e aaaaeaaaaaaaaaaaaans 4
Y o 2 1] S LU EPRRRP 5
Yo T aTe Mo LY A A =) PR 5
SC/BSC ittt e e e e e e e e e e e e ————raaae e e e e e ——————aaaaaeeeeeananarraaes 5

R VAX0Te Lo IVZ=T £ ToT o I8 - 1 o1 (N 6

Installing JAMTOOIS intO yOUr 8amecccieeiieeiiieniiiniienineeniieesiresnennsrensessnsssnnes 7
About the Audio_Modding folderccoeveiiiiriiiiiccceee e, 13

Jampacked 14

COMMANG LINE ...t e e e e e e e e 14
UNPACKING . i eeeeeiiiiee et e e e e e e e e e et bt e e e e e e e e e eeaabaa e eaaeas 14
o= 1ol (] o =SSR PUPRR 14

The PROJECT.JSON i@ .eeeieeieeeeieee ettt 15
oY T =411 1 L= 15
PrOJECINGIME . et e et e e e et e e e e eeaa s 15
1{0] 0.4 1=} PRSP PPPUPPURPPPPP 15

uf’

m xayrga

JAMToolsDocumentation

INCIUES .. e e 16
FOIMALS. e 18
AAF e e e e et e e e e e e e e e e e abraeeeeeans 18

B A A e e e e e e s 19
NOTES e 20
HAshes ... 20
WSYSBUILDER.......ciuuiiiiiiiiiiiiiitiiiteiineinneineeereesseesreessaessasessnssssssnanssssnssnanes 22
Y o Lo 11 | PP 23
COMMANG LINE ..t e e s e e e 23
Project OUTPUL ... e e e e e e e e e aeas 24
=T T3 L=T] S 1Yo o S 24
VT V21 =1 o] LT o1 o U 25
SCEBNES ...ttt e e e e e e e e e e aaes 28
The folders and their fUNCLION........coooiiiiiiii e 29
WAV ettt e et e e e ettt e e e s st bt e e e e e e bee e e e e e aabaaeeeeean 29
REF e et e e e 29
CUSTOM it 29
Where do | find .Ws / .WSYS fIl@S?uuviiiiiiiiiiiiiccceeeee e 29

BAST 30

JAMToolsDocumentation

About JAMTools (JAudioModdingToolkit)

JAMTools is a multi-game toolset for modifying the audio systems in various
Nintendo Gamecube titles. It is designed for ease of use, and conversion of the
binary data into a human readable and human editable format.

Terminology

IBNK

IBNK is the “Instrument Bank” format. This contains information such as the
pitching + grouping of sounds, the fadein and fadeout (attack / release) , and
oscillation.

WSYS
The WSYS is the “WaveSystem”. The wavesystem controls when and how sounds
are loaded, where they are loaded from, and their allocation in memory.

BMS
BMS is a “Binary Musical Sequence”. It contains music bytecode that tells the
sequence engine how to play notes.

AAF

AAF is the Audio Archive File. It contains various sections, like the IBNK / WSYS /
sometimes BMS / Sequence Table / BARC header. It is the file that points to all of
the initialization data for the audio system.

BAA

BAA is the Binary Audio Archive. It is an updated version of the Audio Archive File,
with a unique quirk of being able to contain more of itself. (Though that
functionality is only ever seen in one game)

JAMToolsDocumentation

SFT / BSFT
The SFT is the “Stream File Table” or the “Binary Stream File Table”. It contains file
paths to match up the files on the disk to entries in the sound table

Sound Table /ST / BST

The “Sound Table” or in newer games “Binary Sound Table” is the container that
contains all parameters for the sound playback. The sound table is split up into
categories that determine where the sounds are played from, and what volume /
source they use (as some entire categories can have their effects and playback
adjusted via code at any time in the game, for example, when you pause in
windwaker)

SC/BSC
Sequence Collection or Binary Sequence Collection. Contains the information to
find the BMS files usually, or sometimes substitutes for the “SE.BMS” on newer
games.

JAMToolsDocumentation

JAudio version table

Pikmin 1 Hybrid | V1 banks, vl sequences, custom Audio Archive format.
Luigi’s Mansion vl Fully V1 system

Super Mario Sunshine vl Fully V1 system

Pikmin 2 v1* Fully V1 system with custom streamtable format.
Windwaker vl Fully V1 system

Mario Kart Double Dash Hybrid | vl Banks, v2 Archive (BAA), v2 Sequence
format, v2 soundtable with v1 entries,
nested BAA’s (BAAC)

Four Swords Adventure Hybrid | V1 and V2 banks + v2 system (weird BST)

Donkey Kong Jungle Beat |v2 Fully V2 system.

Twilight Princess V2 Fully V2 system.

Super Mario Galaxy 1 V2 Fully V2 system + special subsystem
Super Mario Galaxy 2 V2 Fully V2 system + special subsystem
Links Crossbow Training | V2 Fully v2 system

Pacman VS V2 Fully v2 system.

Zelda Collectors Edition V2 Fully V2 system.

JAMToolsDocumentation

Installing JAMTools into your game
1. Visit https://www.xayr.ga/tools/SoundModdingToolkit/ and select the most

recent version of the tool.
Index of /tools/SoundModdingToolkit

Name Last modified Size Description
a Parent Directory, -
(i ER R 2020-11-20 18:16 -
[ER 1) 2020-11-22 23:05 -
(e ER TS 2020-12-2219:05 -
314 2020-11-24 10:53 -
(s ER IS 2020-11-24 16:32 -
D3le 2020-11-29 01:20 -
(e ER S 2020-12-04 00:14 -
40w 2020-12-20 21:52 -
(i EX0R A 2020-12-2219:05 -
403 2021-01-1519:37 -
(e ERE 2021-02-06 17:07 -
(e ER B 021-02-1019:23 -
(i ER T 021-03-2016:05 -

(i el 021-08-1515:39 -
2y 021-09-06 02:07 -

2
2
(i B4 2021-05-021746 -
2
2

Apache’2.4.29 (Ubuntu) Server at www.xavr.ga Port 80

2. Select the specific tooling for the game you are modifying.

Name Last modified Size Description

a Parent Directory, -
ﬁ DOUBLEDASH_ScundModdingToolkit 5.2.2 7ip 2021-09-06 02:06 2.0M
ﬁ DonkevKonglungleBeat_SoundModdingToolkit 5.2.2.zip 2021-09-06 02:06 2.0M
ﬁ FourSwordsAdventure_SoundModdingToolkit 52 2 zip 2021-09-06 02:06 2.0M
ﬁ LinksCrossnbowTraining_SoundModdingToolkat_5.2.2.z1p 2021-09-06 02:06 2.0M

ﬁ LuigicMansion SoundModdingToolkit 5.2.2 7ip 2021-09-06 02:06 2.0M
ﬁ PIKMIN?_SoundModdingToolkit_3.2.2.7ip 2021-09-06 02:06 2.0M
ﬁ PacmanVS_SoundModdingToolkat 522 zip 2021-09-06 02:06 2.0M
ﬁ Pikminl_SoundModdingToolkit_5.2.2.zip 2021-09-06 02:06 2.0M
ﬁ Sunshine_SoundModdingToolkit 5.2.2 7ip 2021-09-06 02:06 2.0M
ﬁ SuperMarioGalaxy2_SoundModdingToolkit_5.2.2 zip 2021-09-06 02:06 2.0M
ﬁ SuperMarioGalaxy_SoundModdingToolkit_5.2 2 7ip 2021-09-06 02:06 2.0M
ﬁ TunlightPrincess_SoundModdmgToolkit 5.2.2 zip 2021-09-06 02:06 2.0M
ﬁ WINDWAKER _SoundMeddingToolkit 5.2.2.7ip 2021-09-06 02:06 2.0M

ﬁ ZeldaCollectorsEdition_SoundMeoddingToolkit 5.2 2 zip 2021-09-06 02:06 2.0M

Apache/2.4.29 (Ubuntu) Server at wwwxayr.ga Port 80

uf’

xayrga

https://www.xayr.ga/tools/SoundModdingToolkit/

JAMToolsDocumentation

3. You now have to extract your ROM. Open Dolphin and select “Properties”
on your game.

5351 - Kirby 64: The Crystal Shards Nintendo EE 55emis
(g , VI > g N 002 Nintendo 136 GiB
¥ n Properties

€] Luigi %Jiki intendo E= 356

(&) Luigit ~ OetesDefault50 intendo ‘@ ooop
Convert File...

&) Luigi Change Disc }ooz Nintendo B oo

Ly Luigi* Open GameCube Save Folder intendo BE= jpop-

w Luigi's Open Containing Folder intendo BE= 0.00 B*

Y Delete File...

() Luigi* intendo @ 187682 MiBr
Tags L4

N i B Host with NetPlay = e

4. On the properties of this game, select “Filesystem”. Right click on disk then
select “Extract Entire Disc”

50: GLMPO1 - Luigi's Mansion

“onfig Patches AR Codes Gecko Codes Info Verify | Filesystem ¥

Narne Size

=8
= Extract Files... 23.03 MiB
[Extract System Data.., 18.50 MiB
E Extract Entire Disc... 261.008
H 226.03 KiB
[*- b Ending 10.17 MiB
[+ | (b Event 392.82 KiB
#- (b Game 21.85 MiB
[+ | lwamoto 27.95 MiB
- b Kawano 14.97 Mi%
- b Map 2.79 Mi
#- L model 11.67 MiB
- b Movie 123.97 MiB
[+ | (b Makamura 8.23 MiB

-~ [opening.bnr 781KiB

L system 16.63 KiB

Close

uf’

xayrga

JAMToolsDocumentation

5. Create a new folder, and extract the contents into it by pressing “Select

Folder”

=% Choose the folder to extract to

<« v 4 B « DOLPHIN

Organize ~

MNew folder

Yersor

Folder: | New folder (2)

Type
File f
File f
File f
File f
File f
File f
File f
File f
File f
File f
File f
File f
File f
e

Inside of that folder should look something like this.

OLPHIN\root\mansion_jtutorial

Mame

B il

Date modified

Tpe

File folder
File folder

JAMToolsDocumentation

6. Open the “Files” folder. And locate the AudioRes folder

l ~ | AudioRes

Home Share View

Cut z New item Open elect all
_ = T e 2
y path B Easy access - B Edit elect none
Pin to Qu Delete Rename HNew Properties

- folder B History nvert selection

acce
Select

\AudioRes

Name

- . Banks
B seqs
4 B stream
B Documents # B Jailnit.aaf
B Pictu +

Headph

xayrga

JAMToolsDocumentation

7. Open the ZIP file you downloaded for your game, then copy all of the
contents into your AudioRes folder.

Extr

A\DOLPHIN\root\mansion_jtutorial\files\AudioRes

Mame h Type

l _readme /21/20 / File folder

B Banks / File folder

l Seqs J File folder

. Stream File folder

B ool 121420) File folder

B creditsjamtools.generic.tet / rce File

B cdit_streamns.bat 1/21/2 03 AM Win atch File
EA initialize. bat 1/21/2022 1:08 AM Windows Batch File
B Jilnit.aaf 21, M AAF File

EA rcbuild aaf all.bat / atch File
BA rcbuild_aaf_bank 18 N atch File
EA rcbuild_aaf waves o y. f214 < Batch File
EA zrcbuild_aaf_m J atch File

JAMToolsDocumentation

9. Wait for extraction to complete. Then the toolkit is successfully installed.
You should see an “Audio_Modding” folder.

Mame

m backup

B _readme

Ider
Ider

Ider

Batch
Batch

datch

rebuild_aaf_all.bat

[EI]
MM

rebuild_aaf_bank:

rebuild_aaf_

[El]
[N

zrebui atch

xayrga

JAMToolsDocumentation

About the Audio_Modding folder

The Audio_Modding folder is generated by the tool called “jampacked”. The
various other folders within it are created by various different tools (ibnktool,
wsysbuilder, barctool, etc....) . The “project.json” within it contains the
information required to rebuild the AAF / BAA.

Mame Date modified Type

B enko

B enka
»l

File folder
File folder
File folder
File folder

NK3
B eria
B enks
l include

File folder
File folder
File folder

File folder
File folder
File folder
File folder
M File folder
(2172022 1:16 AM JSOM Source File

1
1
1
1
1
1
1
l Sequences 142 2 File folder
1
1
1
1
1,
1

The “include” folder will contain the various binary forms of the AAF / BAA sections. The project.json will have
references to each of these sections when it is generated. If you would like information on editing the AAF or BAA,
look for the tool “jampacked” in the documentation.

WS*** folders usually contain folders generated b y wsysbuilder. (Wave system data)
IBNK*** folders usually contain contents generated by ibnktool (Instrument Bank Data)
Sequences usually contains the output of barctool.

SoundTable is the work of bast.

While in some games (such as pikmin 1) these folders may be named differently, it will be easy to understand the
function of a particular section.

JAMToolsDocumentation

Jampacked

JAMPACKED

Jampacked is a tool used for packing / unpacking the Audio Archive File or the
Binary Audio Archive.

Command Line
unpacking
Jampacked.exe <unpack> <aaf/baa/bx file> <output_folder>

Unpacks the AAF / BAA or BX file to a project.json + includes.

Packing
Jampacked.exe <pack> <project_folder> <output_file>

Packs the project folder back into its source format, or the format specified by the
project.json

uf’

m xayrga

JAMToolsDocumentation

The PROJECT.JSON file
The project.json file contains the information needed to rebuild your audio
archive. It is designed to be edited, but for jampacked it comes in two variations.

”n u

The base header will always contain “originalFile” “projectName” and “format”

E: > DOLPHIN » root » mansion_jtutorial » files > AudioRes > Audio_Modding

T
L

"originalFile™:

"projectName™:
"format”™: “AAF"
"banks": [

originalFile
the name of the original audio archive, used if a project output file is not
specified.

projectName
this is the name of the project folder, it is not needed either.

format

Format is the important field that specifies what information it should be looking
for during the rebuild. It will also determine the output format of the project
when it is rebuilt.

JAMToolsDocumentation

Identifier that is
supposed to be written
for this section

type it is to be writte

Path to the binary
data that should be
written for this

unique ID and flags

Includes dictate the sections that are loaded into the audio archive.

When extracted, the includes folder includes any sub-files that were contained
inside of the AAF or BAA, such as any WSYS, IBNK, the Stream Table, any other
BAA’s or AAF’s (yes, they can be nested, have fun.)

Inside of the includes folder are the various components of the BAA or AAF.

PC Doc (F) » TOOLSET @ JTK : jampacked : jampackednf > bin Debug out » include

MName

B 0bnk
[]

B ows,
B 160k
. 1.5tm
By
B 2dat

R y
B 2bdi 4 PN BDI File
B 2dat 7:13 PM DAT File

JAMToolsDocumentation

.BNK Instrument Bank

WSY WSYS

STM Stream Table

.BDI Build Date Info

.DAT Unknown data

.ARC Sound or Sequence Archive
.BSTN Binary Sound Table Namearchive
.BST Binary Sound Table

.BMS Binary Musical Sequence

uf’

m xayrga

JAMToolsDocumentation

Formats

AAF

The AAF format has two unique sections and a bit of a “cheat” to get it to
function. The AAF format has a continuous table of sections, but has special
markers to determine where to put the clusters for the wavesystems and
instrument banks, as they are stored in a special way.

DO NOT PUT A WSYS OR IBNK DIRECTLY IN THE TABLE. It will butcher your AAF.
(This only applies for the AAF format. The BAA format doesn’t care.)

Here is what the “Cheat” looks like.

WHEERGER R nEh
list will be dumped

Where the the
WaveSystem list will be
dumped

You can shift it wherever you like in the includes, so long as it appears. These will
both put the contents of the “banks” includes list and the “waves” includes list in
a special table format required by the game (respectively).

JAMToolsDocumentation

BAA
Different from the AAF type, BAA will not include a “waves” and “banks” cluster.

Everything is listed as a raw include entry. The large difference is that the hashes
are different.

"originalFile™

JAMToolsDocumentation

Hashes
Hashes are raw data that get put into the AAF or BAA.

00 01 02 03 04 05 0& 07

00 00 00 02 (0 00

R, il 0o
00 00 00
4T 00 08

This is a hash. You’ll need to know the hash for each type that you want to add.
Usually you can just copy them from other hashes in the project. For example, if
you wanted to add a new IBNK in your AAF, its hash would have to be 2.

IBNK 2
WSYS 3
SOUND_TABLE 1
SEQUENCE_COLLECTION 4
STREAM_MAP 5

“ xayrga

JAMToolsDocumentation

FOR BAA
SOUND_TABLE 1651733536
SOUND_TABLE_STRINGS 1651733614
WSYS 2004033568
IBNK 1651403552
MUSIC_SEQUENCE 1651340064

uf’

m xayrga

JAMToolsDocumentation

WSYSBUILDER

WSYSBUILDER

xayrga

JAMToolsDocumentation

WSYSBuilder, as it’s name implies is used to pack and unpack WSYS's.

You can extract the .ws or .wsy files from your Audio Archive with JAMPACKED, or
if you're using the complete toolset, you can find them in the “include” folder in
the “Audio_Modding” folder.

WSYSBuilder was the first tool developed for JAMTools, so it’s a bit different.

WSYSBuilder, unlike most of the tools here, supports the WSYS format for all
games.

This tool has built in help for it’'s commandline.

Please execute “wsysbuilder help”

aved into the .aw with

atibility with

uf’

m xayrga

JAMToolsDocumentation

The output of a wsysbuilder project looks like this.

LPHIN\root\mkdd\files\AudioRes\Audio_Modding\SelectVoice

Name Date modified Type

B custom 11, 3 PM File folder
| XS File folder
l eI / 3 File folder

B v
IE A

. manifest.json

. wavetable.json

manifest.json

This is the “root” file for the project. It contains several fields to specify rebuilding
parameters.

"id": &,
"waveTable™:

JAMToolsDocumentation

id
This will be the global ID of the WSYS when it is loaded ingame. Each WSYS that is
loaded must have a unique ID.

wavetable
This is the file that will be used to load all of the waveid’s for the entire WSYS. You
cannot rebuild without this.

sceneOrder
This is an ordered list of references to “scene” files. The “scenes” generate the
AW files.

wavetable.json

The wavetable contains a list of waveid’s and the associated information to load
with the WSYS.

a,

pleRate™:

“sampleCount
"loop”:
“"loop_start™: @
“loop_end”
"last™: 32,
“penult”: @

JAMToolsDocumentation

The key of the dictionary is in fact the waveid it is associating that configuration
information with.

1

I r

Ao, I

48": {
“tormat”: @,
"key”: 6@,

"sampleRate": 3
“sampleCount™:

"loop™: .
"loop start”: 8,
"loop end”: 46753,
"last™: 32,

"penult”: @

The ID lines up with the wav files in the “wav” folder.

MAKE SURE YOU READ THE NOTES.

format
This is the format that the sound is repacked in

0 ADPCM4
1 ADPCM2
2 PCM8

3 PCM16

JAMToolsDocumentation

key

This is the base midi note for the sound when it is played back. Raising it will
lower the pitch, and lowering it will raise the pitch. Itis 0-128. The note that plays
gets subtracted by this value.

sampleRate
the samplerate of this sound. The rate at which it plays back. Technically this can
also modify pitch, but it is not recommended.

sampleCount
The count of each individual sample for this sound until the end, regardless of
loop point.

loop
Does the sound loop?

loopStart
What sample the sound starts to loop at.

loopEnd
What sample the looping jumps back to the loopStart at if loop is enabled.

last / penult
Part of the ADPCM4 rebuild system. It requires these two values to transition the
ADPCM4 stream back into the loopStart.

A final note about all of these values.

If you are adding a custom sound from a .wav file, all values
except “key” will be ignored and replaced with the information
derived from the .WAV file at runtime, including loops. WAV
files can be looped in most any DAW with a “SMPL” header.

Your JSON file will not be modified or saved over.

m xayrga

JAMToolsDocumentation

Scenes are effectively the .AW files. The game will load a different .aw / scene
depending on what level or scenario you’re in currently. Each .aw file is custom
built to contain the sound data that a level or scene will need, and only that data.

The basics of a scene are the “awfile” which controls the output name of the .aw,
and of course the “waves”. The waves are numbers, basically an array of
“waveid”’s. Meaning any number in this list must have appeared inside of the
“wavetable.json” first.

JAMToolsDocumentation

The folders and their function

WAV

The WAV folder contains the decoded version of all of the sound files, named by
their ID. You can use this to listen to sounds and find the ID that you’re looking
for. This will not affect rebuilding if it is modified.

REF

The REF folder is used to fulfil a sound data request in the event that the file is not
available in the “custom” folder. So if you don’t replace a sound it will return to its
normal self by using the information in this folder.

Custom

The custom .WAV files for sound replacement go in here. This is the first folder
searched for a soundID during rebuilding. The .WAYV files must share the same
name as the soundID. If you put a file in here with the same name as an existing
soundID, it will replace the audio contents of that ingame.

All WAV files must be 16 bit mono PCM when importing,
32khz or less. Importing will fail and stop if this is not the
case.

Where do | find .ws / .wsys files?

You can look in the include folder of any extracted JAMPACKED project. The
actual WSYS body is contained within the Audio Archive (BAA/AAF). So you'll have
to extract it out with jampacked first, and then repack it after you’ve changed it
with wsysbuilder.

JAMToolsDocumentation

BAST

BAST

“ xayrga

JAMToolsDocumentation

BAST is used to pack and unpack the sound table and sound table name files.

It is compatible with both JAudioV1 and JAudioV2.

The sound table is used to supply parameters and allocate slots for sounds either
in the SE.BMS, Streamed files, or otherwise. This is where a sound is assigned its
“ID”. In order to ADD a sound you have to ADD a sound slot in the sound table.

This tool has built in help for it’'s commandline.

Please execute “bast help”

bast unpack <b File» <output folder:

bast pac F bst fi

bast unp F n file output folder:
bast packbst <project folder:> <bst file> <bstn filex>

F:\TOOLSET\JTK\bast\bast\bin\Release>_

Please take notice of the second format. BAST supports both JAudiovl JASE
format and JAudiov2 BST format. You need to use the appropriate format for the
game you are modifying.

Sound ID’s are assigned to a category and sequentially. Each sound a has a
“Global” id, but the times that is actually used is nil.

uf’

“ xayrga

JAMToolsDocumentation

Categories are loaded in a particular order with a particular set of sound ID’s that
it loads.

The structure of a sound ID is a ul6 (c= category, f = flag, n =id)
c(f+n)nn

So sound 61 in category 11 would look like B83D (flag for not empty is 800, if the
sound is empty it would be BO3D, but we add 800 because it is an allocated
sound. Any DUMMY sounds will have 0 instead of 8)

When repacking, BAST will automatically calculate sound ID’s.

Format here https://xayr.ga/wiki/BST

The JASE or V1 format is composed of just categories and sounds.

PC Doc (F) TOOLSET » JTK bast bast bin Debug test includes

Mame - Jate ified Type

JS0OM File
JSOM File

JIS0M File
| File

JSOM File
JSOM File

BAST will generate .json files with the category ID on each one. Inside of the JSON
files will be sound configuration.

https://xayr.ga/wiki/BST

JAMToolsDocumentation

Each of the entries consumes a sound ID. You can have a maximum of 2047
sounds per category.

"id": 1354,
"index": 543,

"name™ : s
"sflags": B8,
"pflags": 8,
"uflags1”: @,

"uflags2™: @,
"type": 128,
"loadMode™: 8,
"is_not_empty":
"pitch™: 1.@,

"woluma": 65286

You can copy and paste this to make new sound slots, the parameters when
adjusted will affect that particular sound ingame.

ID is the global ID for that sound (remember that it will usually be in hexadecimal)

Index is the ID inside of that category, remember ((categorylD) << 12) + 800 +
soundID will be the ID of that sound. “ID” and “index” are just helper values.

Sflags, and uflags are unknown, only there for rebuilding

Type indicates the type of sound, different values here indicate how the sound is

played back
Y

“ xayrga

JAMToolsDocumentation

Loadmode indicates the source for the sound

Is_not_empty indicates whether or not the sound should be treated as an empty
or not,

Pitch and volume are pretty self-explanatory.

REBUILDING JASE
When rebuilding a JASE-format archive, you’ll need the rebuild hash or rebuild
instructions. This is a giant hexadecimal number that indicates the order of

categories..

bast.exe pack my_bst_project out.bst "FFFFFFFFFFFFFF1011000102030405060708"

This will pack category 10, then 11, then 0, 1,2,3,4,5,6,7,8. Every game requires that its category
order is intact. If you can’t create this, you can always pass the parameter as “guess” or it will
default to it.

BST format
BST format is usually seen in “v2” jaudio implementations.

Contrary to JASE, the BST has “libraries” and “Categories”.

In this sense, “Categories” refer to a type of sound. Libraries refer to a list of
sounds with a common function.

is PC Doc (F) TOOLSET » JTK bast bast bin Debug

MName

B eam

JAMToolsDocumentation

Project.json
The project.json will list a list of folders that contains the BST data, this is a list of
“categories”

w T e e Em | -y | == s % v Tum em | = E Rl I i Sy 1 — —

!
Hnew 16 ¢ ,lne'f\' 17k ,I Brew 18 ¢ Jlnew 19 ,lne;\' 20 ,l B couch runtimeconfig json J H debuginfos . MAP Jlne'f\' 21 4 [project json E3

1§

w oo
L w

Inside each of the listed folders will be a “category.json” that will list the libraries

that were included in this category.

Library JSON files & Sounds
The library JSON files will contain the parameters for sound playback.

The BST format was updated to have unions for sound parameters, so you'll see
some common parameters through sound objects, but you’ll also find that the
various types have different parameters. Note the differences between a
streamed and sequenced sound entry.

“name”

JAMToolsDocumentation

Not all values have been figured out for these parameters yet, so they will change
as the tool evolves. Usually, you can get the desired results just by editing one of
the named variables.

Sound ID’s
Sound ID’s in V2 (BST) are calculated a bit differently)

Again, as the last engine has, sound ID’s are in fact sequential in the category.
Meaning the next sound will consume the next ID.

However, in this version of the engine, you can have 65534 sounds per category.

Sounds have both a global ID and a local ID, but only the local ID is used (based on
category).

The local ID of a sound can be calculated with the following code

SoundIndex | (LibraryIndex << 0x10)

When repacking, BAST will automatically calculate sound ID’s.

